Barycenter of Solar System Earth-Moon barycenter?

Dr. Scott Schneider
Friday Feb 24 ${ }^{\text {th }}, 2006$
Sponsored by the

Society of Physics Students (SPS)

Webpage :
http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml

Brought to you by ...

- The Letter Q (as in Quisp)
- The number 3.1415
- Code Red!
- Diet Coke (after the sugar shakes set in)
- Britney Spears?

RECENTISSUES

Who orbits what?

- Planets in the solar system orbit the Sun?
- Actually they orbit the "center of mass"
- Called the "barycenter" of the solar system
- Barycenter has "smooth" path through galaxy (but Sun/planets "wiggle")
- Earth/Moon system also has a barycenter

How do you calculate the barycenter?

- Start with - how to you find the positions of the planets
- Fancy dancy powerful computers can calculate the positions based on Newton’s law of Gravity (and Einstein (JPL)
- Those "time series" (way too large to be 'emailed') can be analyzed (VSOP theory)
- Fourier series approximation (based on time)
- Now you just need to know the coefficients
- Can then reconstruct the position information

To find the planet locations ...

- Pick a planet .. (poor Pluto too tough, but too far away)
- Pick a date ...
- Pick a coordinate system ...
- Heliocentric = measured from the Sun (center)
- Earth-Sun plane - "point of Aries" (Earth-Sun: Spring)
- Geocentric = measured from Earth (center)
- Get back either X, Y, Z ...
- Measured in Astronomical Units (AU) (Earth-Sun distance)
- or l (longitude), b (latitude), r (radial distance)

"Just" some sums ... (many!)

$L=L_{0}+L_{1} T+L_{2} T^{2}+L_{3} T^{3}+L_{4} T^{4} \quad T=$ time in centuries from Y2000
$L_{0}=\sum A \cos (B+C T)$ tables of coeff $=100$'s, 1000's?
Similar for L_{1}, L_{2}, \ldots then for B - then R
Apply some correction terms (eccentrities, Relativity, etc.)
Then go on to the next planet (or time) ...

- For each of the coordinates (x, y, z or l, b, r) - have up to 5 coefficients for a "time polynomial"
- Coefficients generated from long cosine series
- Some series have over 2000 terms - for one coefficent - for one variable!

First you get the planets, then you get the power ...

- If you have all the locations of the planets
- Let's use x, y, z for the planets
- Can now find the center of mass of the system
- "weighted average" of the planets + Sun
- Measured from the center of the Sun
- Since planet distances measured from Sun, we find barycenter from center of sun
- Can watch barycenter move around disk of the Sun
- Remember, actually sun (and planets) orbit barycenter!

Equations for Barycenter

$$
X_{B C}=\frac{\sum_{i=1 \text { to } 8} m_{i} x_{i}}{M_{\text {tot }}} \quad Y_{B C}=\frac{\sum_{i=1 \text { to } 8} m_{i} y_{i}}{M_{\text {tot }}} \quad \mathrm{Z}_{B C}=\frac{\sum_{i=1 \text { to } 8} m_{i} z_{i}}{M_{\text {tot }}}
$$

$$
M_{\text {tot }}=M_{\text {sun }}+M_{\text {all the planets }}
$$

- What are the subscripts 1 through 8??
- Once we have X, Y, Z for barycenter - can calculate the net distance from the Sun center
- Denote this distance as G - units of Sun radius

How to plot the barycenter info?

- Can plot distance G against time
- Watch for highs and lows
- When is it near Sun center - far from Sun center?
- Can plot barycenter on xy graph of Sun's disk
- Watch path of barycenter
- Remember - really Sun moving around barycenter
- Get too dizzy to try to have Sun wiggle around barycenter!
- Since we know the planet locations - can also plot them on a "solar system" xy plane
- Might be interesting to see where the planets are when the Sun is near or far from the barycenter!

Results from the Barycenter demo

- The barycenter not confined to the Sun's interior!
- From 1940-2060 - G = outside Sun 62 \% of the time
- Can also spend more than 10 years inside
- Jupiter is the "big dog" planet!
- When G is near zero - often have Jupiter on one side - other planets on the other side
- G can be more than 2 solar radii
- This usually means all the planets are "on the same side" of the Sun
- $G=1$ passing through radius of sun
- Watch how the shift in the planets is related to this!
- How would we use this info about a solar system barycenter?
- A "star" would "wiggle" to an outside observer - based on the planets ...

Earth/Moon barycenter

- Earth mass much larger than Moon
- Keeps the barycenter inside the Earth
- Distance from Earth center is 70-80\% Earth radius
- Why does the distance vary?
- Boring to plot that (basically a circle)
- No cool looping in and out of the radius ..
- Where does the Earth-Moon line stick out?
- Can calculate location of moon
- Similar to the planets - a "series" calculation
- Then plot it on the surface of the Earth - longitude/latitude
- Seems easy - how could anyone make a mistake?

Rookie Mistakes! ... and results

- Forgot to take into account Earth axis tilt - doh!
- Forgot to take into account rotation of Earth!
- Short time (1 year) - paths of moon - shift a little
- Why is there any shift at all in a year?
- Longer time (10 years) - starts to fill in band
- Why does it fill in? What factors?
- What else does that band represent?
- What if there was an observer along one of those tracks?

Moon orbits the Earth, right?

- Seems like an obvious question?
- This was at least one thing the ancients got right!
- We have full moons and new moons!
- Moon must get between us and the Sun!
- What does the orbit look like in space
- Jump in a rocket and rise above the Earth-Sun plane
- Look down on the Moon orbit as the Earth-Moon system goes around the Sun
- My prediction is that there are NO loop-de-loops!

Um ... uh er ...

- Ok, I really thought there wasn't supposed to be any outward motion of the moon ...
- Wait .. What was that line about x400 scale?
- Could the scaling of the moon orbit create that motion (the motion that offends me!)?
- Let's try scaling down the moon-orbit?

Ok, well, that's better ...

- Scaling the system by 400x gave loops
- Note: MANY books show the orbit like that!
- Bringing the scale down to 100 x got rid of the loops ...
- But, there is still the "curving outward" part?
- Let's try scaling down the moon-orbit again?

Almost there

- Scaling by 20 gives us a hint that maybe the moon path doesn't curve outward
- Run Demo 4 - 1 to 1 scale
- Note: we can remove Earth orbit just in case
- Now it looks like the orbit is only curving inward - never bends outward
- Can we prove that with data?

Calculate Moon AND Earth!

- Find the distance of the Earth to the Sun
- Find the distance from Moon to Earth
- Add them together - find the Moon-Sun distance!
- Should be able to show that it doesn't curve outward!
- So .. On to the results!

Umm ... uhh ... errr ...

- Wait ... maybe if I just change the vertical scale?

Umm ... uhh ... errr ... part 2

- Any ideas? (Not Brad!)

Can't plot on XY axes!

- The "curving outward" is a "polar plot" idea
- Clearly the Moon has to occasionally come closer to the Sun than the Earth, and go farther out
- If "curving inward" meant getting closer to the Sun all the time - it would crash!
- Then what does it mean to be always curving inward?
- Here is an example ... an ellipse!
- Clearly the object in elliptical orbit comes closer and farther
- But, the orbit path never curves outward!
- Very clever - but the Moon orbit isn't exactly elliptical

How can we show the curvature?

- Dr. Scott puzzled and puzzed, until his puzzler was sore!
- Note: Dr. Scott never reuses jokes - just ask any of the students that have him for more than one term!

Calculus to the rescue!!

- A day spent not thinking about vectors is a day wasted!
- We can use vectors to verify the "only curving inward" nature
- And vectors very happily don’t worry about limitations like XY plots to try to illustrate curvature!
- And, since we have already calculated the XY positions, we can easily calculate vectors
- ... and use certain properties of vectors (mysterious!)

What vectors are needed?

- If we connect the moon's position on one date, to the position on the next date - we have a vector!
- And if we join the second position to a third another vector
- Those two vectors will have a relative angle between them
- Can create a "cross product" of the vectors
- If the two vectors are only the XY plane, the cross product will be in the Z direction only!!
- And, +z or -z direction determined by curvature!

Simple ellipse with vectors and cross

Curve in - Cross product:

$$
\vec{C}=\vec{A} \times \vec{B}=|C| \hat{k}
$$

\perp to Earth Sun plane!

- If vectors "turn inward" then cross product points out of the page/board (+z direction $=+\mathrm{k}$)

Inward curve gives negative value!

Curve out - Cross product:
$\vec{D}=\vec{A} \times \vec{B}=-|C| \hat{k}$
Points below plane!

- If vectors "turn outward" then cross product points INTO of the page/board (-z direction $=-\mathrm{k}$) !!
- We now have a method to prove the "curving inward" Moon orbit!

Drum roll

Cross Product of Moon Vectors

$$
\begin{gathered}
\vec{C}=\vec{A} \times \vec{B}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k} \\
A_{x}=x_{2}-x_{1} \quad A_{y}=y_{2}-y_{1} \\
B_{x}=x_{3}-x_{2} \quad B_{y}=y_{3}-y_{2}
\end{gathered}
$$

$$
C_{t e s t}=\left(A_{x} B_{y}-A_{y} B_{x}\right)>0 ?
$$

- And, he sticks the landing!
- Yup, Olympics were on TV when I was doing this ...
- Also note - only the X and Y values contribute to the Z component of the cross (so only using X and Y is not a problem!)

What further tests?

- More resolution - try 30 days (that would be enough for moon to go "out" then "in" - full orbit of Earth)
- Using about 4000 points - 10x resolution! Still good!!

So what affects orbit curvature?

- Our Moon is essentially unique in the solar system
- Most other moons have the loop-de-loop type behavior
- Some just curve outward - some loop - some do both!
- Curve-outward orbits related to mass ratios of Sun and planet - compared to the distance ratio of Moon to planet
- We can create a 'simulation' system - with "fake" orbits
- The "principles" would still apply
- Can adjust radii and orbit periods - watch cross product!

Fake "moon orbits sun" model

- Have circular orbit for planet around sun
- Have circular orbit of moon around planet
- Adjust the ratio of planet orbit period to moon orbit period
- Adjust the distance of moon-to-planet vs planet-to-sun
- Watch the cross product to see if it goes negative (loops or curves outward)!

Bonus: Planets lining up in space?

- Planets can't line up in a straight line (from the Sun)
- Orbits are tilted - nodes don’t line up - periods don’t line up
- Didn't you see the talk last Tuesday?
- They can line up in some other line in space
- We'll consider three planets - middle occults outside ones
- One planet crosses in front of another - "occultation"
- Does each outside planet see the same event?
- Depends on how far away they are from each other
- Marvin the Martian and Earth and Venus - yes
- Non-reciprocal Occultation of Jupiter Venus Mars (1930) -No

References

Jean Meeus is an Astronomer from Belgium - does some absolutely amazing astronomical calculations. Has many excellent books :

Astronomical Algorithms

Astronomy Morsels

More Astronomy Morsels

Astronomy Morsels III

... please . MORE!!

This talk, and other exciting things can be found ...

htid://abxéJiusedu/s schneider/astro/indexiniml

> Thank you, Good Night, Drive Safely!

