Warren Amateur Astronomy, Spring 2016

2016 is a Leap Year ... why is that so, and what is the history of the calculation?

Why are we so Earth-centric .. What if we lived on Mars, would we need leap years there? Come to the talk and find out!

Leap Year, Shmeep Year!
 -- what's the big deal?

Dr. Scott Schneider

Department of Natural Sciences - Physics

Thursday, April 21st, 2016

Can I get a copy of the talk?

Well, the talk has only just begun .. But, ok!

http://vnatsci.Itu.edu/s schneider/astro/index.shtml

note the underscore:
http://vnatsci.ltu.edu/s_schneider/astro/index.shtml

Don't read ahead and give away all the goodies!

Topics covered in this talk

- Orbit period of the Earth around the Sun
- Compared to Earth solar day
- Corrections to the calendar to add leap days
- Thanks Mr. Caesar!
- Weird leap day rules - Thanks, your Holiness, Pope Gregory!
- Why/How do they work?

Orbit period of the Earth

- Orbit period of the Earth around the Sun = 365 days, right?
- Actually, 365.24219 solar days
- Oh, that pesky 0.24219 - arrgh!
- Can't have a calendar with a fixed number of days
- When was this problem noticed?

Brief History of Leap Time

- Early calendars allowed rulers to hold festivals to honor the "gods"
- Months added/removed at the whim of rulers
- calendars drifted relative to Sun/Moon cycles
- "Intercalation" - adding a day to bring months "in synch" with seasons
- Skip over early calendars - jump to Julius Caesar (~45 BC)
- Julius Caesar had a leap year calendar created = $+Y / 4$
- Not permanent solution (and 3-year confusion!)
- SEP? (Someone Else's Problem)

Brief History of Leap Time - continued

- By 1400's, Popes frustrated - Easter kept shifting
- Also, Vernal (Spring) Equinox kept drifting earlier
- Pope Gregory finally commissioned current rules
- Successful, but a Y5K problem looms!
- Gregorian Reformation - October, 1582
- Needed to eliminate some days - Oct $4^{\text {th }}$ then Oct $15^{\text {th }}$
- Add if /4 years, not if /100, add if /400

Leap Formula $=+\mathrm{Y} / 4-\mathrm{Y} / 100+\mathrm{Y} / 400$
"integer divisions"

Follow Spring Equinox Date

- Spike before 1600? - Gregorian Reformation!

Why does the 4-year rule work?

- Let's round 365.24219 to $365.25=365+1 / 4$
- Each 365 days, Earth doesn't quite make it around
- Takes $1 / 4$ day more
- Would mean the "seasons" would eventually drift
- 365 undercounts the number of days of orbit
- Solution - every 4 years .. Add one day
- Chosen to be my Brother's wedding anniversary day
- Happy $6^{\text {th }}$ anniversary! ... seems more like 24 years, go figure!
- (Also known as February 29th - Leap Year Day)
- Some see it as a "free" day to do something different
- So, that solves the problem right?

Why is the 4-year rule not enough?

- 365.25 > 365.24219
- check my math please?
- We over-adjust with the 4 -year rule
- Extra time each year $=0.25-0.24219=+0.00781$ days
- 11 minutes a year extra
- Every 128 years, would add up to an extra day
- Seasons would start shifting again - sheesh!
- So - we have a century correction
- If Year divisible by 100, don't add Leap Year Day
- Even though it must also be divisible by 4!
- 1700, 1800, 1900 not leap years
- 1600 was .. What about 2000?

Why is the 100-year rule not enough?

- If use 4 year and skip 100 year - 365.24
-365.24219 > 365.24 (= $365+1 / 4-1 / 100$)
- We under-adjust with the 100 -year rule
- Missing time each year $=0.24291-0.24=0.00219$ days
- 3 minutes a year too few
- Every 450 years, would end up losing a day
- So - we have a 400 -year correction
- If Year also divisible by 400, add Leap Year Day
- $1600,2000=$ leap year - as will be 2400
- Ok ... but we are done with changes now, right?

"Y5K" problem

- Using $+\mathrm{Y} / 4-\mathrm{Y} / 100+\mathrm{Y} / 400=365.2425>365.24219$
- We over-adjust with the current rules (see previous graph)
- Extra $=0.24291-0.2425=0.00031$ days
- 26 seconds each year too much
- ~Year 4900 (round to 5K) - extra day accumulated
- One solution: Could skip every 3600 years
- Needs adjustment in 31,000 years
- Another solution: Could skip every 4000 years
- Adjust in 17,000 years
- Another solution: Could skip every 3000 years
- Adjust in 42,000 years
- SEP! (But, that's it .. Right?)

"Y5B" problem yet looms ... http://www.y5b.com/

Benefit to the 400 year rule...?

- Since 2000 was divisible by 400 , can have a 28 year calendar
- Each 4 years, we add a day - after 7 of those ...
- Calendars from 1901 can be used in 1929
- 1902 same day-for-date as 1930, etc.
- 2081 will be "last 28 year calendar"
- So, dust off those 1988 calendars, still relevant!
- First Internet Virus (1988 Internet Worm)
- Comic strip Foxtrot first appeared
- Microsoft Windows 2.1 !!!
- Skrillex and Michael Cera born

Acknowledgments

- Calculations from Astronomy Morsels III by Jean Meeus
- If you want to do astronomy calculations - he is THE source of information!
- Graphs courtesy of Microsoft Excel
- Presentation by ... um, oh yeah, Powerpoint
- Websites, as linked in this talk
- "Mapping Time: The Calendar and its History" - E.G. Richards
-ISBN 0198504136 - Excellent reference!

Warren Amateur Astronomy, Spring 2016

You think a "day" should be shorter than a "year", and only one sunrise per day, right?

Two Sunrises on Mercury
 -- Count 'em TWO!

(And, a "day" longer than the "year"??)
Dr. Scott Schneider
Department of Natural Sciences - Physics
Lawrence Technological University

Thursda, April 21 ${ }^{\text {st }}, 2016$

Start with Earth - because we know it!

- Rotation on axis (w-axis) is ~ 360 deg/day (pretty fast)
- If we were not moving around the Sun, we would see the Sun rise in the East and set in the West ...right?
Scott, please demonstrate ... (so w-axis = E->W motion)
- Suppose we did not turn on our axis - where would the sun rise and set as we orbited (w-orbit)? Scott, we're waiting!
- So, the effect of the orbit is a "west to east" motion of the Sun - interesting! (w-orbit = W-E motion !!)
- So, if the rate due to the orbit is bigger than the axis rate ... the sun moves "differently" in the sky (West to East)

But, w-orbit not quite that simple ...

- All the planets have elliptical orbits
- Mercury is more eccentric than other inner planets
- At perihelion, the planet moving faster, so the w-orbit is higher
- At aphelion, planet slower, thus w-orbit smaller
- Let's call them w-per and w-ap (both of these are basically "w-orbits")
- Remember, if the rate due to the orbit (now w-per, wap) is bigger than the axis rate ... the sun moves "differently" in the sky (West to East)
- Thus .. If the w-axis rate is *between* those two

Data Chart for all the planets

Planet	ecc	a	Orbit Period	mean	Axis period	w-axis	w-per	w-ap	Wper>Waxis>Wapp?
		(AU)	(days)	(deg/day)	(days)	(deg/day)			
Mercury	0.206	0.39	87.97	4.09	58.81	6.12	6.35	2.76	YES!!!
Venus	0.007	0.72	224.70	1.60	-243.69	-1.48	1.62	1.58	no - backwards!
Earth	0.017	1.00	365.25	0.99	1.00	360.00	1.02	0.95	no
Mars	0.093	1.52	868.98	0.41	1.03	350.89	0.50	0.35	no
Jupiter	0.048	5.20	4331.87	0.08	0.41	870.53	0.09	0.08	no
Saturn	0.056	9.54	10760.27	0.03	0.44	822.86	0.04	0.03	no
Uranus	0.047	19.18	30684.65	0.01	0.72	501.16	0.01	0.01	no
Neptune	0.009	30.06	60189.55	0.01	0.67	536.31	0.01	0.01	no
Pluto	0.248	39.53	90465.12	0.00	6.41	56.21	0.01	0.00	no

ecc=eccentricity - how circular (0) or elliptical (>0) is the orbit?
a = semi-major axis - rough distance from sun
orbit period = time for planet to orbit once around the Sun
mean $=$ mean daily motion $=360$ degrees $/$ orbit period
But, depending on eccentricity, can be higher or lower at different points axis period = fixed rotation on axis (how fast is the planet turning on axis) w-axis = daily rotation rate on axis (fixed) $=360 /($ axis period)

Mercury has more eccentric orbit .. W-orbit changes at perihelion/aphelion!!
w-per = daily motion at perihelion (close approach distance to Sun) >n-ap
w-ap = daily motion at aphelion (far approach distance to Sun) <n-per

Earth and Beyond ... if w-axis < w-perihelion ... Doh!

Mercury/Venus ... if w-axis < w-perihelion ...

Mercury ... what does this mean?

- Mercury orbits the sun faster at the perihelion (close approach) compared to the aphelion
- The normal axis rotation (w-axis gives the East to West motion of the sun) is a little slower than the orbit rate at perihelion (w-per gives the West to East motion)
- This means as Mercury approaches the perihelion location - the Sun will momentary "stop" in the sky, then reverse a little, then go forward again!
- If this happens to occur around the sunrise time ... double-sunrise, baby!
- Let's plot angle above the horizon (for center of Sun) against days near the perihelion ...

Ta-Da ??

Oh - there we go!

How much of the sun is involved?

- Graph plots the center of the Sun (so for the leading edge - it would actually occur a little earlier)
- At Mercury's distance - the Sun has an angular size of about 1.73 degrees across the diameter - thus center to edge is about 0.86 degrees
- The center rises a maximum of 0.55 degrees $+0.86=$ ~ 1.4 degrees, so not all of Sun above horizon (more than half shows then sinks again, then rises)

Let's put some Suns on the graph!

Green line for the grassy (?) horizon!

Old internet animation videos ..

Track Sol
Sync Orbit Mercury
Speed: $0.00000 \mathrm{~m} / \mathrm{s}$
FOV: 45* 12' 11.3" (0.20×)

Old internet animation videos .. zoom

Will Mercury always do this?

- Yes and no ... there is a critical eccentricity ...
- Mercury's eccentricity varies between about 0.12 and
0.23 (currently 0.206) .. those pesky other planets and GR!
- If the eccentricity is exactly 0.191059 .. Sun would just momentarily "stop" and then go forward (but no doublesunrise, just a paused one!)
- If eccentricity below 0.191059 - n-axis > n-per and back to a boring single sunrise per day
- Currently Mercury's eccentricity on the rise - so many more years of double-sunrises!

Acknowledgments

- Calculations from Astronomy Morsels III by Jean Meeus
- If you want to do astronomy calculations - he is THE source of information!
- Graphs courtesy of Microsoft Excel
- Presentation by ... um, oh yeah, Powerpoint
-Online animation from Celestia (and some guy named Harry)

Bonus! - Mercury - "Day" longer than "Year"?

- Mercury orbit the sun $=87.98$ days ~ 90 days
- Mercury period on axis $=58.6$ days ~ 60 days
- Every 15 days, 90 degrees on axis (look for colors indicating full rotation on axis)
$-1 / 6^{\text {th }}$ way around sun (60 degrees, 120, 180, 240, 300, 360, etc)
Year 1!
Year 2!!
Day 0-0 deg - noon (W)
Day 15 - ccw 60 (S)
Day 105 - ccw 60 (N)
Day 30 - ccw 120 (E)
Day 120 - ccw 120 (W)
Day 45 - ccw 180 (N)
Day 135 - ccw 180 (S)
Day 60 - ccw 240 (W)
Day 150 - ccw 240 (E)
Day 75 - ccw 300 (S)
Day 90 - ccw 360 (E)
Day 165 - ccw 300 (N)
Day 180 - ccw $360(\mathrm{~W})_{30}$

Bonus! - Mercury - "Day" longer than "Year"?

Year 1!
Year 2!!
Day 0-0 deg - noon (W)
Day 15 - ccw 60 (S)
Day 105 - ccw 60 (N)
Day 30 - ccw 120 (E)
Day 120 - ccw 120 (W)
Day 45 - ccw 180 (N)
Day 135 - ccw 180 (S)
Day 60 - ccw 240 (W)
Day 150 - ccw 240 (E)
Day 75 - ccw 300 (S)
Day 165 - ccw 300 (N)
Day 90 - ccw 360 (E)
Day 180 - ccw 360 (W)

Retrogrades, Marvin the Martian, and the Universe, oh my!

Dr. Scott Schneider

How to find your way in the Solar system :

- All planets go around the Sun - also, in the same "direction"
- Define reference plane as Earth-Sun
- Called the ECLIPTIC
- All other planet orbits tilted, relatively
- Venus has an orbit tilt of about 3^{0}
- Save this info for later!

Retrograde Motion

-Outer planets - location moves "backward" against the distance stars
-Occurs at times of Opposition

- Inner planets have "conjunctions" .. Could have transits!

Mars Retro Example

Retrograde Motion

Mars Retro Example

Shape of the retrograde loops?

1. The outer planets have orbits tilted relative to the ecliptic.
2. Earth moves faster in orbit than outer planet.
3. As Earth moves past opposition point, angle between Earth and outer planet changes orientation in space .. points to different background stars!
4. During time of opposition, outer planet changes latitude above ecliptic.

High or Low above ecliptic

As outer planet moves toward highest point in it's motion, retrograde motion give "top loop" shape.

180 degrees away, as outer planet moves toward lowest point in it's motion, retrograde motion give "bottom loop" shape.

The "dots" are the moment of opposition.

Crossing above/below ecliptic

As outer planet through the descending node (high to low), retrograde motion gives a dropping "S" shape.

As outer planet moves through ascending node (low to high), retrograde motion gives a rising "S" shape.

16 basic shapes - depends on time of year!

Spring
Equinox

Fall
Equinox

16 basic shapes - depends on time of year!

Mars - Opposition dates and type of the loop, 1941 to 2035

1941 Oct. 10	15	1973 Oct. 25	16	2005 Nov. 7	1
1943 Dec. 5	3	1975 Dec. 15	4	2007 Dec. 24	4
1946 Jan. 14	4	1978 Jan. 22	4	2010 Jan. 29	5
1948 Feb. 17	5	1980 Feb. 25	6	2012 Mar. 3	6
1950 Mar. 23	6	1982 Mar. 31	6	2014 Apr. 8	6
1952 May 1	8	1984 May 11	9	2016 May 22	10
1954 June 24	12	1986 July 10	12	2018 July 27	12
1956 Sep. 10	14	1988 Sep. 28	14	2020 Oct. 13	14
1958 Nov. 16	1	1990 Nov. 27	2	2022 Dec. 8	3
1960 Dec. 30	4	1993 Jan. 7	4	2025 Jan. 16	4
1963 Feb. 4	5	1995 Feb. 12	5	2027 Feb. 19	5
1965 Mar. 9	6	1997 Mar. 17	6	2029 Mar. 25	6
1967 Apr. 15	7	1999 Apr. 24	8	2031 May 4	8
1969 May 31	10	2001 June 13	11	2033 June 28	12
1971 Aug. 10	13	2003 Aug. 28	14	2035 Sep. 15	14

References

Jean Meeus - TRANSITS - Willmann-Bell

Jean Meeus is an Astronomer from Belgium does some absolutely amazing astronomical calculations. Has three other excellent books

Astronomical Algorithms
Astronomy Morsels
More Astronomy Morsels

What about Marvin? Why so very very angry?

What about Marvin? Why so very very angry?

What about Marvin? Why so very very angry?

Wanted to blow up the Earth because it blocked his view of Venus!

Conditions for blocking ..

-How often does
Earth block Venus?
-Calculate the location where the Venus-Mars line crosses the ecliptic - if the Earth is there also - block!

After the computer pulled a few all-nighters ...

From the year 1000 to $3000 \ldots$

> Only one time $=$
> Nov $8^{\text {th }}, 2746 \sim 7: 45 \mathrm{pm}$

Conclusion ...

Marvin needs to decaffeinate!!

There is an image going around the 'net ..

Has to do with the orbits of Earth and Venus being close to a 13-8 ratio (13 orbits for Venus about 8 orbits for Earth)

I was skeptical at how perfect the pattern looks. (It was from the internet ..)

So, I calculated my own pattern from actual numbers:

If rotate other image a little .. Pretty close!

Internet image .. Perfect symmetry - Mine .. Not bad!

