Geek Week, Spring 2016

You think a "day" should be shorter than a "year", and only one sunrise per day, right?

Two Sunrises on Mercury
 -- Count 'em TWO!

(And, a "day" longer than the "year"??)

Dr. Scott Schneider

Department of Natural Sciences Lawrence Technological University

Monday, March 21st, 2016

Start with Earth - because we know it!

- Rotation on axis (n-axis) is 360 deg/day (pretty fast)
- If we were not moving around the Sun, we would see the Sun rise in the East and set in the West ...right?
Dr. Scott, please demonstrate ... (so n-axis = E->W)
- Suppose we did not turn on our axis - where would the sun rise and set as we orbited (n-orbit)? Dr. Scott, we're waiting!
- So, the effect of the orbit is a "west to east" motion of the Sun - interesting! (n-orbit = W-E !!)
- So, if the rate due to the orbit is bigger than the axis rate ... the sun moves "differently" in the sky (West to East)

But, n-orbit not quite that simple ...

- All the planets have elliptical orbits
- Mercury is more eccentric than other inner planets
- At perihelion, the planet moving faster, so the n-orbit is higher
- At aphelion, planet slower, thus n-orbit smaller
- Let's call them n-per and n-ap (both of these are basically " n-orbits")
- Remember, if the rate due to the orbit (now n-per, nap) is bigger than the axis rate ... the sun moves "differently" in the sky (West to East)
- Thus .. If the n-axis rate is *between* those two

Data Chart for all the planets

Planet	ecc	$\begin{gathered} \mathbf{a} \\ (A U) \\ \hline \end{gathered}$	Orbit Period (days)	mean (deg/day)	Axis period (days)	$\begin{gathered} \mathrm{n} \text {-axis } \\ \text { (deg/day) } \end{gathered}$	n-per	n-ap	Nper>Naxis>Napp?
Mercury	0.206	0.39	87.97	4.09	58.81	6.12	6.35	2.76	YES!!!
Venus	0.007	0.72	224.70	1.60	-243.69	-1.48	1.62	1.58	no - backwards!
Earth	0.017	1.00	365.25	0.99	1.00	360.00	1.02	0.95	no
Mars	0.093	1.52	868.98	0.41	1.03	350.89	0.50	0.35	no
Jupiter	0.048	5.20	4331.87	0.08	0.41	870.53	0.09	0.08	no
Saturn	0.056	9.54	10760.27	0.03	0.44	822.86	0.04	0.03	no
Uranus	0.047	19.18	30684.65	0.01	0.72	501.16	0.01	0.01	no
Neptune	0.009	30.06	60189.55	0.01	0.67	536.31	0.01	0.01	no
Pluto	0.248	39.53	90465.12	0.00	6.41	56.21	0.01	0.00	no

ecc=eccentricity - how circular (0) or elliptical (>0) is the orbit?
a = semi-major axis - rough distance from sun
orbit period = time for planet to orbit once around the Sun
mean $=$ mean daily motion $=360$ degrees $/$ orbit period
But, depending on eccentricity, can be higher or lower at different points axis period = fixed rotation on axis (how fast is the planet turning on axis) n-axis $=$ daily rotation rate on axis $($ fixed $)=360 /($ axis period $)$

Mercury has more eccentric orbit .. N-orbit changes at perihelion/aphelion!!
n-per = daily motion at perihelion (close approach distance to Sun) > n-ap
n-ap = daily motion at aphelion (far approach distance to Sun) <n-per

Earth and Beyond ... if n-axis < n-perihelion ... Doh!

Mercury/Venus ... if n-axis < n-perihelion ...

Mercury ... what does this mean?

- Mercury orbits the sun faster at the perihelion (close approach) compared to the aphelion
- The normal axis rotation (n-axis gives the East to West motion of the sun) is a little slower than the orbit rate at perihelion (n-per gives the West to East motion)
- This means as Mercury approaches the perihelion location - the Sun will momentary "stop" in the sky, then reverse a little, then go forward again!
- If this happens to occur around the sunrise time ... double-sunrise, baby!
- Let's plot angle above the horizon (for center of Sun) against days near the perihelion ...

Ta-Da ??

Oh - there we go!

How much of the sun is involved?

- Graph plots the center of the Sun (so for the leading edge - it would actually occur a little earlier)
- At Mercury's distance - the Sun has an angular size of about 1.73 degrees across the diameter - thus center to edge is about 0.86 degrees
- The center rises a maximum of 0.55 degrees $+0.86=$ ~ 1.4 degrees, so not all Sun above horizon (more than half shows then sinks again, then rises)

Let's put some Suns on the graph!

Green line for the grassy (?) horizon!

Will Mercury always do this?

- Yes and no ... there is a critical eccentricity ...
- Mercury's eccentricity varies between about 0.12 and 0.23 (currently 0.206)
- If the eccentricity is exactly 0.191059 .. Sun would just momentarily "stop" and then go forward (but no doublesunrise, just a paused one!)
- If eccentricity below 0.191059 - n-axis > n-per and back to a boring single sunrise per day
- Currently Mercury's eccentricity on the rise - so many more years of double-sunrises!

Acknowledgments

- Calculations from Astronomy Morsels III by Jean Meeus
- If you want to do astronomy calculations - he is THE source of information!
- Graphs courtesy of Microsoft Excel
- Presentation by ... um, oh yeah, Powerpoint
- Online animation from Celestia (and some guy named Harry)
- Thanks to the Arts and Sciences Seminar committee for letting me do my Astro-gig once a year!

Mercury - "Day" longer than "Year"?

- Mercury orbit the sun $=87.98$ days ~ 90 days
- Mercury period on axis $=58.6$ days ~ 60 days
- Every 15 days, 90 degrees on axis (look for colors indicating full rotation on axis)
$-1 / 6^{\text {th }}$ way around sun (60 degrees, $120,180,240,300,360$, etc)
Year 1!
Year 2!!
Day 0-0 deg - noon (W)

Day 15 - ccw 60 (S)
Day 30 - ccw 120 (E)
Day 45 - ccw 180 (N)
Day 60 - ccw 240 (W)
Day 75 - ccw 300 (S)
Day 90 - ccw 360 (E)

Day 105 - ccw 60 (N)
Day 120 - ccw 120 (W)
Day 135 - ccw 180 (S)
Day 150 - ccw 240 (E)
Day 165 - ccw 300 (N)
Day 180 - ccw 360 (W) 14

