LAB 1: SIMPLE HARMONIC MOTION

Goals:
- Explore the characteristics of periodic motion
- Explore the relationship among distance, velocity, acceleration and force
- Explore the relationship between force and acceleration

Introduction
Periodic motion is motion that repeats itself. You can see the repetition in the position, velocity, or acceleration-time graphs. The length of time to go through one cycle and begin to repeat the motion is called the period. The number of cycles in each second is called the frequency. The “center” of the motion (or the “resting place” of the mass on a vertical spring) is called the equilibrium point. The maximum displacement from the equilibrium position is called the amplitude. The unit of frequency, cycles-per-second is given a special name—Hertz (Hz). “Simple Harmonic Motion” is a form of periodic motion where the force is proportional to the elongation of the spring:

\[F = -k(\Delta x) \]

In this investigation you will look more carefully at the distance, velocity and acceleration graphs for simple harmonic motion. You will also look at the force graph for simple harmonic motion.

Part A - Supplement – Running DataStudio within Windows XP virtual machine

1. You need to have a LTU laptop computer with the latest harddrive image to run DataStudio inside Windows XP virtual machine.

Part B - Supplement – Using DataStudio

1. Load Supplement file. If you have never used DataStudio, or need a “refresher”, then take a look at this help document: Using DataStudio.

Preliminary activities
1. Prepare equipment. Connect the motion and force sensors to your computer through an Xplorer GLX unit (please follow the instruction in Blackboard). It would be very helpful to look at the online help page for this lab. Start the DataStudio software.

2. Load the experiment file. Load the file Lab01_SHM.DS from the College2 folder.

3. Preparing the force probe. Press the ZERO button on the side of the probe (this is a “mechanical” tare for the probe). We can’t “zero” the probe in DataStudio, so occasionally we might need to keep track of a zero “offset” and account for it.

Part 1 Periodic Motion of a Spring and Mass

In this activity you will examine the graphical display of the motion of a mass hanging from a spring.
1. **Check graph settings.** DataStudio should be displaying Distance, Velocity, and Force graphs.

2. **Setting up a mass on a spring.** Hang the spring vertically from a support and attach 1500 grams (1kg + 500 gram) to the spring. Tape a small card to the bottom of the mass. Use a little bit of tape to hold the mass in place on the spring, and use a bit of tape to connect the spring to the force probe. Place the motion detector facing up directly below the spring. Use the protective wire cage for the motion detector. Push the mass straight up about 5-10 cm., and let go. Adjust the height of the support so that the mass comes no closer than 0.5 m to the detector.

3. **Recording the motion (practice).** We will start graphing once we know we have a smooth motion (the periodic motion is what we want to see, not the rough start of the motion). Click **START** to begin graphing. Be sure the motion detector "sees" the mass over its full motion and that there are no flat portions of your graph where the mass came too close to the detector.

4. **Make some very clean distance and velocity graphs.** Start the mass oscillating as you did in Part 1.2. When the motion is smooth, click **START**. When the collection process is finished, you should find some nice clean sinusoidal curves. Adjust the vertical axes of the graphs so that they are easier to read. See the [graph layout help page](#) for information on how to make these changes in DataStudio. Sketch the graphs on the Data/Question sheet. Save this experiment under a new name (for future reference).

Comment Note that when an object returns to the same position, it does not necessarily mean that a cycle is ending. It must return to the same position, and the velocity and acceleration must also return to the same values in both magnitude and direction for this to be the start of a new cycle.

5. **Labeling graphs.** Label the graphs (*after you print them*) with the following: (one example of each)
 "B" at the BEGINNING of a cycle and.
 "E" at the END of the same complete cycle.
 "A" on a spot where the mass is moving AWAY from the detector fastest.
 "T" on a spot where the mass is moving TOWARD the detector fastest.
 "S" on a spot where the mass is standing STILL.
 "F" where the mass is FARTHEST from the motion detector.
 "C" where the mass is CLOSEST to the motion detector.

Part 2 Investigating the motion of a Mass Undergoing SHM

1. **Select three cycles.** Scale the time axis so that you can see about 3 full cycles of the motion.

 Questions Answer the series of questions on the Data/Question sheet.
Part 3 Properties of Periodic Motion--Period, Frequency

1. Examining a cycle on the distance graph above. Click on the SMART TOOL icon (it will place a square cross-hairs into the graph which you can move around to identify data points). Find the beginning and end of one complete (indicate them with an arrow on your distance graph above). (You may of course start with any part of the cycle but be consistent once you pick a starting point.) Remember: the time for one cycle is called the period.

2. Calculating period and frequency. What are the period and the frequency of the motion? Display around 10 cycles of the motion. For the best accuracy, use the SmartTool to measure the total time over as many complete cycles as possible. To calculate the period, we will then divide that total time by the number of cycles. Calculate the period and the frequency of the motion:

\[f = \frac{\text{# of cycles}}{\text{time}} \quad T = \frac{1}{f} \]

Number of cycles counted: _____ Time for these cycles: _________ sec

Frequency: _______ Hz (cycles/sec) Period: _________ sec

Part 4 Spring Restoring Force and SHM

We can plot the force against the distance and obtain the spring constant. Now, we have several cycles of the motion, so the graph will actually loop back and forth over a straight-line area (an example is shown below in the graph). If the data works, it will resemble that graph – if not, it would be easy to retake the data.

1. Measure the force constant of your spring. Set one of the graphs to plot Force against the Distance. (Either double-click on the graph in the DISPLAYS panel, or choose from the WINDOW menu item.) You should get a straight line (when you scale the axes properly).

2. Making a linear fit. Click on the FIT tool button (next to the “calculator” button). Check the LINEAR option. Now, in the graph, you should find a textbox that shows the numbers for the Fit. See the example on the next page:
3. Finding the spring constant. In the Linear Fit box, we will find the value for the spring constant. The intercept value can be ignored, and the “R” (correlation) should be very close in magnitude to 1.0 if we have a good set of data. The m value is the slope, of the graph, and is the spring constant (absolute value of the slope, that is). Fill in the data on the Data/Question sheet.

4. Compare with data. We can calculate the spring constant by examining one data point of the motion. Unfortunately, since we can’t zero the motion detector or the force probe, we will have to do some preliminary calculations (we want the distance measured from equilibrium, and the force measured from equilibrium – this is what is calculated in the spring constant value). Select the X and F graph (with time axes). Click once on the Position graph to make it active, and select the Smart Tool. Then do the same for the Force graph. Notice that the smart tools are “connected” so that they stay together horizontally. Using the Position smart tool, locate a point where the distance is at a local maximum (farthest from the detector) – write that value in the appropriate box on the data/question sheet. Using the smart tool on the Force graph, locate the force value FOR THAT X VALUE YOU JUST FOUND – and write that on the data/question sheet (this should be a minimum in the force graph). Now, find a minimum for the X graph, and the corresponding maximum for the Force graph – write those on the data question sheets. We can now calculate the average values (the equilibrium values) and from that get the Δx and ΔF values that we will use to calculate the spring constant for that individual point. We can then find the percent difference between the two spring constant values. These calculations are made on the Data/Question sheets.

Question: Answer on the Data/Question sheet.

How does the spring constant value from the linear fit compare to the single point value? If there were a noticeable difference, how would you explain that?
DATA/QUESTION SHEET - LAB 1: SIMPLE HARMONIC MOTION

Part 1 Periodic Motion of a Spring and Mass

4. Make some very clean distance and velocity graphs.

![Graphs](image)

Figure 1 – Periodic motion of a mass on a spring

5. **Labeling graphs.** For each of the situations below, pick one graph above, and label one point on that graph to illustrate that particular situation:

 - "B" at the BEGINNING of a cycle and.
 - "E" at the END of the same complete cycle.
 - "A" on a spot where the mass is moving AWAY from the detector fastest.
 - "T" on a spot where the mass is moving TOWARD the detector fastest.
 - "S" on a spot where the mass is standing STILL.
 - "F" where the mass is FARTHEST from the motion detector.
 - "C" where the mass is CLOSEST to the motion detector.

[These graphs, and your annotations, will be useful on the next page when you answer the questions. When you print the graphs for the final report – repeat this procedure on the DataStudio printout.]
Part 2 Investigating the motion of a Mass Undergoing SHM

For these questions – use your graph from the previous page in Part 1 – and you want to give answers as “descriptive comments” – not numerical values!

Questions

a) When the mass is at its maximum distance from the equilibrium position, how would you describe the velocity of the mass? How would you describe the velocity of the mass when it is at the equilibrium position?
__
__

b) When the mass has its maximum positive velocity, how would you describe its distance from the equilibrium position? What about when it reaches maximum negative velocity? Explain.
__

__

c) How does the acceleration curve compare to the force curve? What differences are there? From your graphs, what would you say is the relationship between force and acceleration?
__
__

d) How does the force curve compare to the distance curve? What differences are there? What would you say is the relationship between force and position?
__

__

e) Do the distance and velocity graphs have the same period? Do their peaks occur at the same times? If not, how are the peaks related in time?
__

__

f) According to your graphs, for what distances from the equilibrium position is the acceleration maximum? How would you describe the distances when the acceleration is zero? How would you describe the velocity of the mass in each of these cases?
__
__

Part 4 Spring Restoring Force and SHM

3. Finding the spring constant.

\[k_{\text{graph}} = \text{spring constant} = |\text{slope}| = \text{___________} \text{ N/m} \]

4. Compare with data.

\[X \text{ maximum value} = \text{___________} \text{ m} \quad \text{time} = \text{___________} \text{ sec} \]
\[F \text{ minimum value (for that } X \text{ value)} = \text{___________} \text{ N} \]
\[X \text{ minimum value} = \text{___________} \text{ m} \quad \text{Force maximum} = \text{___________} \text{ N} \]
Average $X = \left(\frac{\text{max} + \text{min}}{2}\right) = \boxed{\text{m}}$
Average $F = \left(\frac{\text{max} + \text{min}}{2}\right) = \boxed{\text{N}}$

$\Delta x = \text{max-average} = \boxed{\text{m}}$
$\Delta F = \text{average-minimum} = \boxed{\text{N}}$

$$k_{\text{single}} = \frac{\Delta F}{\Delta x} = \boxed{\text{N/m}}$$

$$\% \text{ difference} = \frac{|k_{\text{single}} - k_{\text{graph}}|}{\left(\frac{k_{\text{single}} + k_{\text{graph}}}{2}\right)} \times 100\% = \boxed{\text{}}$$

Question
How does the spring constant value from the linear fit compare to the single point value? If there were a noticeable difference, how would you explain that? ____________________________
__
__

How do I write up this lab? … What is required for this lab report?

Consult the Rubric for this experiment and the “Lab Report Instructions” document (both found on the Lab Schedule page).

Questions/Suggestions -> Dr. Scott Schneider - S_SCHNEIDER@LTU.EDU

Portions of this laboratory manual have been adapted from materials originally developed by Priscilla Laws, David Sokoloff and Ronald Thornton for the Tools for Scientific Thinking, RealTime Physics and Workshop Physics curricula. You are free to use (and modify) this laboratory manual only for non-commercial educational uses.